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Abstract: Replacing static synapses with the adaptive ones can affect the

behaviour of neuronal network. Several network setups containing synapses

modelled by alpha-functions, called here static synapses, are compared with

corresponding setups containing more complex, dynamic synapses. The dynamic

synapses have four state variables and the time constants are of different orders of

magnitude. Response of the network to modelled stimulations was studied

together with effects of neuronal interconnectivity, the axonal delays and the

proportion of excitatory and inhibitory neurons on the network output.

Dependency of synaptic strength on synaptic activity was also studied. We found

that dynamic synapses enable network to exhibit broader spectrum of responses

to given input and they make the network more sensitive to changes of network

parameters. As a step towards memory modelling, retention of input sequences in

the network with static and dynamic synapses was studied. The network with

dynamic synapses was found to be more flexible in reducing the interference

between adjacent inputs in comparison to the network containing static synapses.
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Introduction

Although the change of the firing rate of a single neuron shows its participation in

information processing, there is evidence that temporal synchronization in the

activity of groups of neurons may be an important component of neuronal code

[1, 2]. A pair of neurons can be synchronized either via direct synaptic connection

between them, or as a result of a common input. Because most of the synaptic

contacts, which each cortical cell receives, originate from cells located in the same

cortical area [3], it is reasonable to assume that much of the observed

synchronization is generated locally (as a consequence of a population dynamics of

neurons in the network). Many papers analyse behaviour in biologically motivated

models of neuronal networks by employing static synapses with fixed conductance.

However, only few papers consider more complex dynamics of synaptic

transmission and its role in network dynamics [4, 5, 6]. It is interesting, since the

synaptic plasticity is currently considered as one of the microscopic events

underlying macroscopic brain functions, such as learning and memory. The long-

term potentiation (LTP) and long-term depression (LTD) of synaptic strength are

the most studied among the modifications, which a synapse can undergo after

presynaptic stimulations. The change of the synaptic strength may increase the

amount of information that can be stored in a network and should avoid saturation

at synapses, as it was predicted theoretically [7]. In this study we try to analyse our

model of cortical-like network containing dynamic synapses and compare its

behaviour with the model in which the dynamic synapses are replaced by the static

ones.

Materials and methods

Model

We simulated two networks with randomly connected neurons. In one of them

neurons were connected by static synapses and in the other neurons were

connected by dynamic synapses. All synapses were also modelled with axonal

delays, reflecting the fact that action potentials (APs) have to travel between

neurons. The delays were taken randomly from the uniform distribution of values

ranging from 0 ms to 50 ms, with mean 25 ms and standard deviation 14.4 ms, or

they were identical for all neurons within the same range. The probability of

connection between neurons was set such each neuron was randomly connected

with 10 other neurons in average, which hold for excitatory and inhibitory

neurons, the last constituting 20% of all neurons. In simulations testing the effect

of connectivity, the average number of connections between neurons varied from

1 to 50. In simulations testing the effect of the proportion of excitatory neurons,

this parameter varied from 10% to 100%. The network was driven by excitatory

neurons of input layer (neurons in input layer were modelled as point processes

with exponential distribution of random interspike intervals; firing of input neurons

was independent with the mean firing rates fixed for all neurons, distributed
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randomly of uniform distribution from 0 Hz to 30 Hz, with mean 15 Hz and

standard deviation 8.66 Hz; the number of input neurons was the same as the

number of neurons in the network). There were no separate layers modelled or

considered in the network. Each neuron in the network, except for described

input neurons, was modelled using the Hodgkin-Huxley equations. All neurons in

the network, except for their inhibitory V
ISYN

 and excitatory V
ESYN

 postsynaptic

potentials, were identical.

We used standard tools: the model was written in the C under LINUX.

Hardware used: an IBM type PC with the Pentium 4 at 2.4 GHz. For integrating

differential equations we used a fixed time step four-order Runge-Kutta method.

Different time steps for integrating fast and slow processes were used, i.e.

different time steps for integrating neuronal events and synaptic events.

The Hodgkin-Huxley neuronal mechanism

The neuronal equations are based on the original equations of Hodgkin and Huxley

[8], adapted for neocortical pyramidal cells by Laing and Chow [9] and Wilson [10].

The set of the equations is:

J
MEM

dV
 
= (–I

MEM
 +  I

ESYN
 –

 
I
ISYN

 + I
STIM

),
dt

I
MEM

 = g
L
 (V – V

L
) + g

Na
m

3
h (V – V

Na
) + g

K
n

4
 (V – V

K
) + g

A
m

A 
(V – V

K
) + g

Ca
m

Ca 
(V – V

Ca
)

dn
 
= R("

n
(V)(1 – n) – $

n
(V)n),

m
A
 = [Ca]/([Ca] + 1),

dt s = 1/(1 + exp (– (V + 25)/2.5)),

dh
 
= R("

h
(V)(1 – h) – $

n
(V)h),

m
Ca

 = 1/(1 + exp (– (V + 50))).

dt

d[Ca]
 
= –0.002g

Ca
s(V – V

Ca
) – [Ca]/80,

dt

The first equation is the net current with the membrane and synaptic currents.

The second equation is the principal equation. The rest of differential equations

are auxiliary equations describing the activation of individual currents for h and n,

which are the standard ion channel particles of Hodgkin-Huxley voltage dependent

channels. Equations of the voltage dependence for " and $ are not shown due to

the limited space, they can be found in [9]. [Ca] is calcium ion concentration. The

m
A
 potassium after-hyper-polarization current depends on the concentration as

shown, together with the s and m
Ca

, which are the voltage activated calcium

currents. All the variables sum up in the principal equation for the membrane

current I
MEM

 and this value then sums together with excitatory synaptic input

I
ESYN 

= ∑ y
i
 inhibitory synaptic input I

ISYN
 = ∑y

j
 and stimulation I

STIM, 
where y

i

and y
j
 are effective synaptic strengths, described in the following subsection.

ji
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Other parameters: Reversal potentials are: V
L
 = -65 mV, V

K
 = -80 mV,

V
Na

 = 55 mV, V
Ca

 = 120 mV, V
ISYN

 = –95 mV, V
ISYN

= 50 mV. Channel conductances

are: g
L
 = 0.05 nS, g

K
 = 40 nS, g

Na
 = 100 nS, g

Ca
 = 0.5 nS, g

A
 = 5 nS, the

temperature factor used in the auxiliary equations is R = 3 and J
MEM

 = 1 ms.

Adaptive synapse

The adaptive synapses, also called dynamic synapses, were originally described in

experiments with neocortical slices [11]. We use variable names, used in [12]:

J
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where y, z, x and u are state variables, called active, inactive, recovered and

facilitated, respectively. The active variables are the effective synaptic strengths.

Time constants are: synaptic J
syn

 = 3 ms, recovered J
rec

 = 100 ms and facilitated

J
fac

 = 800 ms. I
INP

 are series of input action potentials and the parameter U

determines the increase in the value of u with each spike. Switches (parameters) D

and F attain values of 0 or 1. With both zeros the parameters set a “static” alpha

function, where the effective synaptic strength does not change. When nonzero, D

and F switch on depressing and facilitating mechanisms, respectively. Depending on

the history of incoming spikes, on the frequency of incoming spikes, synapses can

either rest in given state, either be facilitated, or be depressed. Low frequency

does not lead to synaptic strength changes, medium input frequency brings the

synapse into facilitated state and when some value of high frequency is reached,

the synapse is depressed, because of the lack of resources modelled by the

variable u. Synaptic adaptive mechanisms can be compared to similar adaptive

mechanisms, which broaden the range of input currents in a neuron, which is a

higher computation unit. In the model presented here this type of adaptation is

implemented by calcium currents, see also [12]. In Fig. 1 we show that adaptive

synapses reproduce the LTP and LTD phenomena. For more extensive set of

equations describing the LTP and LTD on a synapse see [13]. Adaptive synapses

are a subject of further computational studies, see for example [14].

Hamming distance

To compare analytically neuronal spike trains, we used the Hamming metric; two

binary spike train sequences u
i
 and v

i
, i , {1, 2, 3, …, m}, consisting of 1 and 0,

representing spike and silence within 5 ms time intervals (refractory period for AP

generation), were subtracted to get the Hamming distance H = ∑|u
i
 – v

i
|

In fact this parameter tells us how different are two spike trains, e.g. the spike

trains belonging to two neurons or the spike trains of one neuron under various
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conditions. We used Hamming metric to measure differences between network

states caused by various input: the network was repeatedly stimulated with

variable input pattern (VP), followed by silent interval – thereafter stimulated with

identical input pattern (IP). This simulation was repeated 10 times, in order to test

how the first VP input changes the network response to the IP input. The term

identical input pattern (IP) means that spatio-temporal activity of input neurons

constituting the input pattern is the same for each simulation. The term variable

input pattern (VP) means that spatio-temporal activity of input neurons varies

between simulations randomly. From binary spike train sequences corresponding

to the network output during the IP stimulation, the average intersimulation

Hamming distance was computed (from 50 pair-wise Hamming distances H – all

pairs across 10 simulation repetitions) for each neuron. The intersimulation

Hamming distances were averaged then for all neurons, producing the Hamming

distances (HD) shown in fig. 5 and 6. The HD quantifies the separation of network

outputs caused by varying input or stimulation arrangement. The IP stimulation

lasted 200 ms in simulations where the influence of the silent interval on the HD

was tested. If the influence of elapsed time on the HD was studied, the IP

stimulation lasted 100 s (HD was evaluated here each second) and there was only

100 ms silent interval separating the VP and IP. To be able to compare the HD in

networks with various output frequencies (smaller networks tend to have lower

frequency of their neurons), we normalised the HD according to the average

neuronal frequency in the network and according to the duration of analysed

output sequence.

Results

First, the strength of dynamic synapse in dependence on the stimulation frequency

was analysed. Fig. 1 shows the result of such stimulations with the visible

depression within 0.1 – 10 Hz, representing the weakening of synaptic strength at

lower frequencies. This dip, also observable on real synapses [15], indicates that

within the physiological range of input frequencies the implementation of the

dynamic synapse could be considered as reasonable.

In dependence on various parameters, the response of the network to

stimulation is either synchronous firing, bursting, or firing with weak or no

synchrony. As we can see on Fig. 2, in response to increasing relative numbers of

excitatory synapses, the network started to be synchronized and burst at high

proportions of excitatory synapses. With the same amount of excitatory synapses,

the bursting was much more expressed in the network containing dynamic

synapses (see insets in Fig. 2). To quantify and compare the network outputs, we

measured the cross-correlation between binary neuronal spike trains (see

Methods), depicted on Fig. 3. Evident is here the difference between the level of

synchronization in static and dynamic networks. The latter synchronized with

much lower proportion of excitatory neurons, compared to the former. Similar
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Figure 1 –The frequency dependence of dynamic synapses. On the abscissa is thea logarithm of stimulation

frequency. The ordinate gives synaptic conductance G
syn

. For the relation of this curve to the LTP/LTD phe-

nomena, see [13].

Figure 2 – Sample output spike trains. The two panels show gradual synchronization of the static (St) and

adaptive (Dy) networks, when the proportion of excitatory synapses is varied. The variation of the percentage

of excitatory synapses together with mean firing frequency in the network is on the y-axis left, cross-correlation

Rxy is on the y-axis right. 20 sample spike trains are shown for each of the 10-parameter variations.

On the x-axis is time in ms. Note the initial 1000ms period of “adaptation” in the adaptive network.
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outputs were generated by increasing the connectivity in the network (by

increasing the number of synapses connecting neurons, Fig. 3), causing bursting at

high level of connectivity in dynamic network (not shown). At low proportions of

excitatory neurons, or at weak connectivity in the network, the firing

desynchronised.

Because axonal delays certainly play very important role in the network

dynamics [16], we tested how they influence the network activity, and how the

mechanisms of adaptive synapses could interfere with delays. We found very

strong dependence between the degrees of neuronal synchronization and mean

axonal delays in network with dynamic synapses (Fig. 4). Different behaviours

resulted when the delays were random and when they were fixed, both with the

same mean. In the first case synchronization decreased with the increasing delay,

whereas the fixed delays acted contrary-wise and initiated bursting when

prolonged. Only weak dependence was found between delays and degree of

synchronization in the network with static synapses (Fig. 4).

Testing the effects of some other parameters on the firing regime, e.g. the

influence of synaptic strength of input neurons or the effect of their number, we

found they have small influence on the network behaviour (not shown).

As the first attempt in studying memory in the network, we tried to measure

retention of the presented input in the network (by the term retention we mean

effects of previous inputs on the current input). As described in Methods, the

network was stimulated by two input sequences, with the variable input pattern

(VP) followed by the identical input pattern (IP), which was separated from the

VP by silent period – absence of any input. Using the Hamming metric, we

analysed differences between network outputs for various VP to get separation

HD between network outputs during the second stimulation sequence IP.

The extent to which are network outputs separated when responding to the

identical IP stimulations indicates how the VP input is retained in the network.

First, we tested how the length of the silent period following the VP input affects

its retention, what is depicted in Fig. 5. If the silent interval separating the VP and

IP input was shorter then 1800 ms, the network response to the IP input was

influenced by the VP input. If it was longer, the network did not retain any traces

of the initial VP input, and responded identically (with the 100% reproducibility)

to the IP input. This holds even in the network containing 1000 neurons (Fig. 5,

graphs with stars) and for 1000 ms or 10000 ms lasting VP sequence (not shown).

Retention (Fig. 5) was also influenced by the size of the network – as the

networks gets smaller, the retention curves reached zero level earlier (Fig 5

shows this relationship for 10, 100 and 1000 neurons, both for static and dynamic

synapses). Remarkable is the difference between the retention in static and

dynamic network. The retention curve in the network with static synapses is close

to linear shape, whereas for the network containing adaptive synapses it is close

to the exponential.
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Figure 3 – Cross-correlation in dependence on connectivity and power of excitation. The observation from

Fig. 2 is shown quantitatively here, using the cross-correlation R
xy

. On the x-axis is percentage of excitatory

synapses (solid line) and number of connections of one neuron (dotted line). Static synapses are shown by

crosses (x), dynamic synapses are shown by stars (*). Both parameters make the cross-correlation R
xy

 rise.

Number of neurons was 100. Axonal delays were random and ranged between 0–30 ms.

Figure 4 – Cross-correlation in dependence on delays. Delays are not captured by ordinary differential equa-

tions (DE’s), they have to be implemented as extra features. The dependence of cross-correlation R
xy

 on all

combinations of random (solid line) and fixed (doted line) delays in static and adaptive synapses is shown

here. Number of neurons was 100 with 80% of excitatory neurons.
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Figure 5 – Retention and fading of activity for static and adaptive networks. The hamming distance (HD)

between network outputs is depicted here in dependence on the duration of silent interval separating the VP

and IP input. The HD indicates the retention of the VP input after silent intervals following the VP input.

After 2s, exactly 1800 ms, even the network containing 1000 neurons forgets completely its input. Elapsed

time – “silence interval” – epoch of input silence after the VP input is on the x-axis and fraction of the VP

retention is on the y-axis. The values on the ordinate are normalised with respect to firing frequency and

duration of analysed output sequence and represent HD referred to one AP.

Whereas the previous stimulation arrangement analysed principally the fading of

network activity, studying responses of the network exposed to the IP input for

much longer than 200 ms produced retention curves with another meaning. Here,

the course of the HD represents the extent to which the initial input interferes

with ongoing network activity. The silent interval was 100 ms and the response of

the network at the end of the 100 s lasting IP stimulation could be as variable as at

the beginning of the IP stimulation (see Fig. 6A). This holds mainly in larger

networks containing static synapses. As the networks get smaller or static synapses

are replaced by dynamic ones, the retention of the initial VP input fades out and

the reproducibility of network responses to the IP stimulation improves. E.g. for

the network containing 20 neurons, the retention of the initial VP after the 100s

stimulation with IP is at the 25% of its initial value, see Fig. 6a. In the network

composed of 100 neurons, the retention after the 100s IP stimulation is still 98%,

the same as for the network with 20 neurons connected by static synapses (Fig.

6a). However the insertion of the 1s silent period into ongoing IP input decreases

this retention by 40%, but not in the networks with static synapses – the retention

here is still 100% (see Fig. 6b).



378) Prague Medical Report / Vol. 105 (2004) No. 4, p. 369–380

Kuriščák E., Maršálek P.

Discussion

What is the advantage for neuronal networks to use dynamic synapses changing

their strength within milliseconds or seconds over the usage of static ones? We

tried to answer this question and built a computer model of network containing

neurons connected by static or dynamic (adaptive) synapses. Considering

transitions between output regimes – bursting, synchronous firing, firing with weak

or no synchrony – we found that dynamic synapses enable networks to be more

sensitive to the changes in their input in comparison to the static networks

requiring broader spectrum of inputs to produce similar outputs. Moreover,

dynamic synapses endowed networks more sensitivity to changes involving

neuronal connectivity, delays or ratio between excitatory and inhibitory neurons.

As a step towards studying memory in modelled network, we tried to estimate

the retention (fading) of the input after the silent period or during the ongoing

input. In the first case we obtained the exponential curves for dynamic synapses,

Figure 6 – Retention upon ongoing network activity. This two graphs show how is the 100s lasting IP input

pattern influenced by the first 100ms lasting VP input. The IP and VP inputs are separated by 100ms silent

interval. Panel A shows the retention (evaluated by Hamming distance, HD) of the VP input in the 20

neuronal networks with static (solid line) and dynamic synapses (dashed line). Panel B represents the same

stimulation arrangement but in the network containing 100 neurons and with the 1s lasting silent interval

inserted into the middle of the IP input (after 50 seconds). The values on the ordinate are normalised with

respect to firing frequency and duration of analysed output sequence and represent HD referred to one AP.
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and linear curves for static synapses. This means that networks with dynamic

synapses reach their readiness for new input more quickly after the end of

previous input than do networks with static synapses. In the network containing

dynamic synapses, with its longest synaptic time constant J
fac

 = 800 ms, the

reason of such behaviour could be the fading of synaptic facilitation during the

silent interval. However in the network with static synapses, the longest time

constant is only J
syn

 = 3 ms what do not explain such long fading in static network.

The only possible cause is the calcium dynamics implemented in neurons of static

and dynamic networks (see Methods), with the level of intracellular Ca
2+

 changed

in dependence on neuronal activity [17]. Type of the synaptic transition changes

the retention from linear to exponential, however without prolonging it

significantly. Two seconds after any input followed by silent period, the network

was not able to remember it and responded to the second input without

interference with the first one. This means that events arriving into the network

separated by period of network inactivity lasting few seconds could not be

integrated together. The network or neuronal tissue deprived of the input for such

time certainly possesses other mechanisms responsible for integrating events

separated by longer intervals. We did not consider these mechanisms here [18].

Probably, the average spontaneous firing frequency in the CNS (2 – 5 Hz) and

extensive interconnectivity among neurons prevent neuronal networks form such

long silent periods anyway.

If the silent period between inputs is less than two seconds, what is the most

common situation, the fist input influences network output even after the

hundreds seconds lasting second input (fig. 6). The reason is the bifurcation in the

network [19] induced by a first input. We found that fading of the effect of

bifurcation depends on network size, interval of silent period and on the type of

the synapse. As showed in Results, in small networks containing tens or hundreds

of neurons (e.g. smaller than number of neurons in cortical columns, where the

mutual connectivity is higher than the connectivity to outside), the dynamic

synapses may speed up this fading and cause the processing of new input is being

better eliminated from the undesired interference of already processed input.

Thus the network with dynamic synapses could have advantage over the networks

with static synapses – the processing of streamed input is more efficiently filtered

from the interference of past network activity.

Omitting here other mechanisms supporting the memory storage like other types

of synaptic plasticity, structural changes at synapses or the connectivity pattern

[20], it is possible one type of memory is maintained by the sustained network

activity, revived by multiple inputs from different CNS regions. Such input could

provide the network with meaningful stimuli or drive it with random input, with

background noise [21]. In the first case input is modified in the network, resulting

in the very complex storage code and dynamics. In the second case, there should

be mechanisms filtering out the meaningless input from meaningful information.
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